Axoplasmic free magnesium levels and magnesium extrusion from squid giant axons
نویسنده
چکیده
The free magnesium concentration in the axoplasm of the giant axon of the squid, Loligo pealei, was estimated by exploting the known sensitivity of the sodium pump to intracellular Mg2+ levels. The Mg-citrate buffer which, when injected into the axon, resulted in no change in sodium efflux was in equilibrium with a Mg2+ level of about 3--4 mM. Optimal [Mg2+] for the sodium pump is somewhat higher. Total magnesium content of axoplasm was 6.7 mmol/kg, and that of hemolymph was 44 mM. The rate coefficient for 28Mg efflux was about 2 X 10(-3) min-u for a 500-mum axon at 22-25degreesC, with a very high temperature coefficient (Q10=4-5). This efflux is inhibited 95% by injection of apyrase and 75% by removal of external sodium, and seems unaffected by membrane potential or potassium ions. Increased intracellular ADP levels do not affect Mg efflux nor its requirement for Na+/o, but extracellularl magnesium ions do. Activation of 28Mg efflux by Na+/o follows hyperbolic kinetics, with Mg2+/o reducing the affinity of the system for Na+/o. Lanthanum and D600 reversibly inhibit Mg efflux. In the absence of both Na+ and Mg2+, but not in their presence, removal of Ca2+ from the seawater vastly increased 28Mg efflux; this efflux was also strongly inhibited by lanthanum. A small (10(-14) mol cm-2) extra Mg efflux accompanies the conduction of an action potential.
منابع مشابه
Ionized magnesium concentration in axoplasm of dialyzed squid axons.
Magnesium ion is a significant constituent of cell cytoplasm and participates in many intracellular enzymatic reactions. Although total cell magnesium can be rather easily determined by atomic absorption spectroscopy, the free magnesium is more difficult to measure and is much less than the total because of magnesium binding to cellular organelles or ionic constituents. Moreover, since magnesiu...
متن کاملPlasmalemmal transport of magnesium in excitable cells.
In excitable cells, the concentration of intracellular free Mg2+ ([Mg2+]i) is several hundred times lower than expected if Mg2+ ions were at electrochemical equilibrium. Since Mg2+ is a permeant ion across the plasmalemma, it must be constantly extruded. An ATP-dependent Na/Mg exchanger has been proposed as the sole mechanism responsible for Mg2+ extrusion. However, this hypothesis fails to exp...
متن کاملEffects of the external ions and metabolic poisoning on the constriction of the squid giant axon after axotomy.
After transecting the squid giant axon in the presence of an artificial external medium, which was composed of the ions normally present in squid blood, the cut ends of the axon constrict. This constriction could be completely blocked by cutting the axon in the presence of an artificial internal medium composed of the ions normally present inside the axon. By interchanging the ions in the inter...
متن کاملRemoval of Potassium Negative Resistance in Perfused Squid Giant Axons
Squid giant axons, internally and externally perfused with solutions having potassium as the only cation, exhibit an approximately linear steady-state current-voltage relation. When small amounts of calcium and magnesium are present in the external potassium solution, the current-voltage curve is markedly nonlinear, exhibiting the rectification and negative resistance which have been observed f...
متن کاملMagnesium efflux in dialyzed squid axons
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 68 شماره
صفحات -
تاریخ انتشار 1976